Indian Statistical Institute, Bangalore M. Math II, Second Semester, 2022-23 Mid-semester Examination,

Special Topics - Quantitative Finance

Maximum Score 75

Duration: 3 Hours

Students are allowed to use class notes and the book Stochastic Calculus for Finance II by Shreve.

1. (15) Consider two markets, \mathcal{M}_1 and \mathcal{M}_2 both with Ω as the set of possible scenarios and both with A_1, A_2, \dots, A_K as the set of freely traded assets. In market \mathcal{M}_1 , the share price of asset A_j is S_j^0 at t = 0 and, in scenario ω , it is $S_j^1(\omega)$ at t = 1. In market \mathcal{M}_2 , the corresponding prices are \tilde{S}_j^0 and $\tilde{S}_j^1(\omega)$ where

$$\tilde{S}_j^0 = S_j^0/S_1^0$$
 and $\tilde{S}_j^1(\omega) = S_j^1(\omega)/S_1^1(\omega).$

Thus, share prices in market \mathcal{M}_2 are quoted in shares of A_1 . Observe that in market \mathcal{M}_2 , asset A_1 is riskless, with rate of return 0, provided that its share price remains positive under every market scenario.

- (a) Assuming the price of A_1 is positive at time zero and at time one in every market scenario, show that \mathcal{M}_1 is arbitrage free iff \mathcal{M}_2 is arbitrage free.
- (b) Suppose \mathcal{M}_2 has equilibrium measure $\tilde{\pi}(\omega)$. Show that the measure $\pi(\omega)$ given below is an equilibrium measure for \mathcal{M}_1 .

$$\pi(\omega) = \tilde{\pi}(\omega) \frac{S_1^0}{S_1^1(\omega)} / \delta$$

where δ is the discount factor in \mathcal{M}_1 given by

21.02.23

$$\delta = \sum_{\omega} \tilde{\pi}(\omega) \frac{S_1^0}{S_1^1(\omega)}.$$

2. (10) Let $\theta(s) = W(s)I(s \le 1)$ where W(s) is standard Brownian motion. Suppose we approximate $\theta(s)$ by a sequence of simple processes $\theta^{(n)}(s)$ defined as

$$\theta^{(n)}(s) = \sum_{k=0}^{2^n - 1} \theta\left(\frac{k}{2^n}\right) I\left(\frac{k}{2^n} \le s < \frac{k+1}{2^n}\right).$$

Show that $\theta^{(n)}(s)$ approximates $\theta(s)$ in \mathcal{H}_2 , that is,

$$\lim_{n \to \infty} \int_0^\infty E(\theta(s) - \theta^{(n)}(s))^2 ds = 0.$$

- 3. (25) Consider the Black-Scholes model under the risk-neutral measure with the risk-free rate r = 0.
 - (a) Show that the conditional distribution of S_T given $S_t = S$ is same as the distribution of S_{T-t} when the initial price S_0 is S.
 - (b) Let C(S, t, K, T) denote the price of a call option with expiration T and strike T at time t with stock price $S_t = S$. Using part (a), show that

$$C(S, t, K, T) = C(S, 0, K, T - t).$$

Hence find a PDE for C where the partial derivatives are taken with respect to t and T.

(c) For any constant a, show that

$$C(aS, t, aK, T) = aC(S, t, K, T).$$

Hence find a PDE for C where the partial derivatives are taken with respect to S and K.

4. (25) For the Black-Scholes model under risk neutral measure with r > 0, we obtained the price of an up and in barrier option with payoff 1 and barrier at $A(> S_0)$ as

$$e^{-\theta^2/2} \int_0^\infty e^{-\theta\alpha} (e^{\theta x} + e^{-\theta x}) e^{-(x+\alpha)^2/2T} \frac{1}{\sqrt{2\pi T}} dx.$$

Here $\theta = -\frac{1}{\sigma}(r - \frac{\sigma^2}{2})$ and $\alpha = \frac{1}{\sigma}\ln(A/S_0)$.

- (a) Express the price in terms of the standard normal cdf.
- (b) Show that the event $M_T > A$ is identical to the event $\tau_A < T$, where M_T is the maximum of the share price of the stock over the interval [0, T] and τ_A is the first time that the share price of the stock reaches A.
- (c) Find the price of an option with payoff $e^{-\beta \tau_A}$, for some fixed β .