Indian Statistical Institute, Bangalore
 M. Math II, Second Semester, 2022-23
 Mid-semester Examination, Special Topics - Quantitative Finance
 Maximum Score 75

21.02.23

Duration: 3 Hours
Students are allowed to use class notes and the book Stochastic Calculus for Finance II by Shreve.

1. (15) Consider two markets, \mathcal{M}_{1} and \mathcal{M}_{2} both with Ω as the set of possible scenarios and both with $A_{1}, A_{2}, \cdots, A_{K}$ as the set of freely traded assets. In market \mathcal{M}_{1}, the share price of asset A_{j} is S_{j}^{0} at $t=0$ and, in scenario ω, it is $S_{j}^{1}(\omega)$ at $t=1$. In market \mathcal{M}_{2}, the corresponding prices are \tilde{S}_{j}^{0} and $\tilde{S}_{j}^{1}(\omega)$ where

$$
\tilde{S}_{j}^{0}=S_{j}^{0} / S_{1}^{0} \quad \text { and } \quad \tilde{S}_{j}^{1}(\omega)=S_{j}^{1}(\omega) / S_{1}^{1}(\omega)
$$

Thus, share prices in market \mathcal{M}_{2} are quoted in shares of A_{1}. Observe that in market \mathcal{M}_{2}, asset A_{1} is riskless, with rate of return 0 , provided that its share price remains positive under every market scenario.
(a) Assuming the price of A_{1} is positive at time zero and at time one in every market scenario, show that \mathcal{M}_{1} is arbitrage free iff \mathcal{M}_{2} is arbitrage free.
(b) Suppse \mathcal{M}_{2} has equilibrium measure $\tilde{\pi}(\omega)$. Show that the measure $\pi(\omega)$ given below is an equilibrium measure for \mathcal{M}_{1}.

$$
\pi(\omega)=\tilde{\pi}(\omega) \frac{S_{1}^{0}}{S_{1}^{1}(\omega)} / \delta
$$

where δ is the discount factor in \mathcal{M}_{1} given by

$$
\delta=\sum_{\omega} \tilde{\pi}(\omega) \frac{S_{1}^{0}}{S_{1}^{1}(\omega)}
$$

2. (10) Let $\theta(s)=W(s) I(s \leq 1)$ where $W(s)$ is standard Brownian motion. Suppose we approximate $\theta(s)$ by a sequence of simple processes $\theta^{(n)}(s)$ defined as

$$
\theta^{(n)}(s)=\sum_{k=0}^{2^{n}-1} \theta\left(\frac{k}{2^{n}}\right) I\left(\frac{k}{2^{n}} \leq s<\frac{k+1}{2^{n}}\right)
$$

Show that $\theta^{(n)}(s)$ approximates $\theta(s)$ in \mathcal{H}_{2}, that is,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} E\left(\theta(s)-\theta^{(n)}(s)\right)^{2} d s=0
$$

3. (25) Consider the Black-Scholes model under the risk-neutral measure with the risk-free rate $r=0$.
(a) Show that the conditional distribution of S_{T} given $S_{t}=S$ is same as the distribution of S_{T-t} when the initial price S_{0} is S.
(b) Let $C(S, t, K, T)$ denote the price of a call option with expiration T and strike T at time t with stock price $S_{t}=S$. Using part (a), show that

$$
C(S, t, K, T)=C(S, 0, K, T-t)
$$

Hence find a PDE for C where the partial derivatives are taken with respect to t and T.
(c) For any constant a, show that

$$
C(a S, t, a K, T)=a C(S, t, K, T)
$$

Hence find a PDE for C where the partial derivatives are taken with respect to S and K.
4. (25) For the Black-Scholes model under risk neutral measure with $r>0$, we obtained the price of an up and in barrier option with payoff 1 and barrier at $A\left(>S_{0}\right)$ as

$$
e^{-\theta^{2} / 2} \int_{0}^{\infty} e^{-\theta \alpha}\left(e^{\theta x}+e^{-\theta x}\right) e^{-(x+\alpha)^{2} / 2 T} \frac{1}{\sqrt{2 \pi T}} d x
$$

Here $\theta=-\frac{1}{\sigma}\left(r-\frac{\sigma^{2}}{2}\right)$ and $\alpha=\frac{1}{\sigma} \ln \left(A / S_{0}\right)$.
(a) Express the price in terms of the standard normal cdf.
(b) Show that the event $M_{T}>A$ is identical to the event $\tau_{A}<T$, where M_{T} is the maximum of the share price of the stock over the interval $[0, T]$ and τ_{A} is the first time that the share price of the stock reaches A.
(c) Find the price of an option with payoff $e^{-\beta \tau_{A}}$, for some fixed β.

